锕锕锕锕锕锕锕www在线播放,chinese篮球体育生自慰,在线看片免费不卡人成视频,俺来也俺去啦最新在线

https://www.aibang.com/a/48710

Publication

 

 

近日,廣東以色列理工學(xué)院材料科學(xué)與工程系譚啟教授(共同通訊作者)與四川大學(xué)合作在國際頂級期刊《自然-通訊》上發(fā)表題為“Excellent Hardening Effect in Lead-Free Piezoceramics by Embedding Local Cu-doped Defect Dipoles in Phase Boundary Engineering”的高水平論文,采用新策略實(shí)現(xiàn)無鉛壓電陶瓷的優(yōu)異硬化效果,有望推動其在高功率應(yīng)用中的發(fā)展。該研究獲MATEC重點(diǎn)實(shí)驗(yàn)室開放研究項(xiàng)目資助,彰顯了廣以學(xué)者在國際材料研究領(lǐng)域的前沿地位。

 

 

《自然-通訊》是國際頂尖學(xué)術(shù)期刊《自然》旗下的子刊,也是材料化學(xué)等領(lǐng)域公認(rèn)的高水平期刊,以嚴(yán)格的同行評審和學(xué)術(shù)影響力著稱。該期刊在JCR分區(qū)中常年位列Q1, 2024年影響因子為14.7。

 

 

研究背景與問題

壓電陶瓷是一種特殊的陶瓷材料,它可以實(shí)現(xiàn)機(jī)械能與電能的相互轉(zhuǎn)換,在工業(yè)和科技領(lǐng)域有著廣泛應(yīng)用,包括聲波傳感器、聲波發(fā)生器、電子點(diǎn)火器、壓力傳感器等。傳統(tǒng)含鉛壓電陶瓷(如PZT)因性能優(yōu)異且大規(guī)模工業(yè)化生產(chǎn),在市場中占據(jù)主導(dǎo)地位。然而,鉛的毒性對環(huán)境有害,因此開發(fā)無鉛壓電陶瓷以替代含鉛材料成為研究的重要趨勢。其中,基于鉀鈉鈮酸鹽(KNN)的無鉛壓電陶瓷因其在相界工程、織構(gòu)化、缺陷工程和復(fù)合陶瓷等方面取得的顯著進(jìn)展而備受關(guān)注,展現(xiàn)出較高的壓電系數(shù)(d??)、電致應(yīng)變和溫度穩(wěn)定性。

 

為了使KNN能夠?qū)崿F(xiàn)大規(guī)模工業(yè)化生產(chǎn)的高功率應(yīng)用,壓電陶瓷需要同時(shí)具備高d??和高機(jī)械品質(zhì)因數(shù)(Q?),以確保良好的機(jī)電性能并減少能量耗散產(chǎn)生的熱量。然而,平衡d??和Q?是一個(gè)重大挑戰(zhàn),因?yàn)樗鼈儗O化貢獻(xiàn)的偏好不同。這種矛盾在KNN基壓電陶瓷中尤為突出,傳統(tǒng)的相界工程雖然顯著提高了d??,但Q?卻極低(<50),因此可能導(dǎo)致大量的機(jī)械損耗,限制了大規(guī)模生產(chǎn)的可行性。傳統(tǒng)受主摻雜(如銅、錳)和新提出的孤立氧空位策略雖能提高Q?,但無法保證高d??, 影響了產(chǎn)品的機(jī)械性能,大規(guī)模生產(chǎn)于是無從談起。

 

解決方案與成果

本研究提出了一種新的策略,對鈮酸鉀鈉(KNN)基無鉛壓電陶瓷進(jìn)行研究,在多個(gè)方面取得了重要結(jié)果,通過在正交-四方相界工程(O-T PBE)中嵌入局部銅受主缺陷偶極子,實(shí)現(xiàn)了KNN基陶瓷的d??和Q?平衡。該策略保留了室溫O - T相界,引入了二聚體(CuNb′′′-Vo??)'和三聚體(Vo??-CuNb′′′-Vo??)?缺陷。通過X射線吸收精細(xì)結(jié)構(gòu)(XAFS)光譜和第一性原理計(jì)算,證實(shí)了三聚體缺陷的存在。保留的O-T相界和缺陷引起的局部結(jié)構(gòu)不均勻性確保了高d33,二聚體缺陷形成的缺陷偶極子極化PD釘扎疇壁運(yùn)動,提高了Qm。使得KNN - BNH - 1Cu樣品優(yōu)于其他典型KNN基壓電陶瓷。

 

相結(jié)構(gòu)和電滯回線行為

 

機(jī)電特性和電疇消長模型

 

結(jié)論

基于O-T PBE,通過引入銅受主摻雜,形成二聚體(????????′′′???????)′和三聚體(???????????????′′′???????)?缺陷。二聚體缺陷形成缺陷偶極子極化,釘扎疇壁運(yùn)動;三聚體缺陷則引入局部結(jié)構(gòu)異質(zhì)性,導(dǎo)致納米尺度多相共存和豐富的納米疇。實(shí)驗(yàn)結(jié)果表明,當(dāng)銅摻雜量x=1時(shí),Q?提高了4倍,而d??僅降低了1/5(達(dá)到340 pC/N,Q?為256)。該策略為無鉛壓電陶瓷中d??和Q?的平衡提供了新的范式,有望推動其在高功率應(yīng)用中的發(fā)展,推動無鉛壓電陶瓷在更多領(lǐng)域的實(shí)際應(yīng)用。

 

論文鏈接

https://www.nature.com/articles/s41467-025-58269-5

 

PROFILE

 

 

譚啟(Daniel Tan)

材料科學(xué)與工程系教授、

副系主任

譚啟教授于2018年8月由以色列理工學(xué)院招聘到廣東以色列理工學(xué)院任教。他于1998年獲得伊利諾伊大學(xué)厄巴納-香檳分校材料科學(xué)與工程博士學(xué)位,1989年獲得中國科學(xué)院固體物理研究所博士學(xué)位,師從葛庭燧院士,曾任教于中國科學(xué)技術(shù)大學(xué)。1994年,譚啟教授前往美國阿貢國家實(shí)驗(yàn)室及伊利諾伊大學(xué)厄巴納-香檳分校擔(dān)任訪問科學(xué)家。1998年,他加入霍尼韋爾國際公司,擔(dān)任高級科學(xué)家并開發(fā)半導(dǎo)體行業(yè)所需的高K介電常數(shù)鐵電材料。2000年,他受聘于CTS公司,擔(dān)任高級工程師,負(fù)責(zé)開發(fā)高性能壓電傳感器和手機(jī)天線材料。隨后12年,他就職于美國通用電氣公司,致力于開創(chuàng)性納米復(fù)合材料電子及儲能的研究。2016年,他加入W.L. Gore擔(dān)任高級科學(xué)家,進(jìn)一步開展高溫電容器和多空薄膜過濾技術(shù)的研究。

 

譚啟教授發(fā)表、聯(lián)合發(fā)表超過120篇期刊文章、2本大學(xué)教材、3本書籍章節(jié)及50份企業(yè)內(nèi)部報(bào)告。作為一個(gè)創(chuàng)新者,他在陶瓷、聚合物、儲能和電子器件領(lǐng)域擁有60項(xiàng)專利及商業(yè)秘密。作為企業(yè)及美國政府科技項(xiàng)目的首席科學(xué)家,率先開發(fā)了納米絕緣介電復(fù)合材料、高溫高能量密度電容器。譚啟教授獲得多個(gè)獎(jiǎng)項(xiàng),包括中國科學(xué)院自然科學(xué)獎(jiǎng)一等獎(jiǎng),通用電氣全球研究中心創(chuàng)新獎(jiǎng),2022年廣東以色列理工學(xué)院最佳教學(xué)獎(jiǎng),2023年中國創(chuàng)新創(chuàng)業(yè)成果交易會最具投資價(jià)值科技成果獎(jiǎng)等獎(jiǎng)項(xiàng)。他同時(shí)還是MRS, ACERS, SPIE, iMAPS and IEEE等學(xué)術(shù)機(jī)構(gòu)的成員及多家期刊的評審人。

 

 

Publication

 

 

Recently, Professor Daniel Q. Tan from the Department of Materials Science and Engineering at Guangdong Technion-Israel Institute of Technology (GTIIT) co-published a high-impact paper as a corresponding author in the top journal Nature Communications by collaborating with Sichuan University. The study, titled "Excellent Hardening Effect in Lead-Free Piezoceramics by Embedding Local Cu-doped Defect Dipoles in Phase Boundary Engineering," proposed a new strategy to achieve excellent hardening effect in lead-free piezoceramics, paving the way for their application in high-power devices. The study was supported by the MATEC open research program, reinforcing GTIIT scholars’ leading role in international materials research.

 

 

Nature Communications is a sub-journal of the renowned and international journal Nature, widely recognized as a high-impact publication in fields such as materials science and chemistry. Known for its rigorous peer-review process and strong academic influence, it consistently ranks in the JCR Q1 category, with a 2024 impact factor of 14.7.

 

 

Research background

Piezoelectric ceramics are a type of ceramic materials capable of interconverting mechanical and electrical energy, with extensive industrial applications such as ultrasonic transducers, acoustic generators, electronic igniters, and pressure sensors. Piezoceramics, represented by lead zirconate titanate (Pb(Zr, Ti)O?, PZT) family, dominate the piezoelectric market due to excellent electrical properties and large-scale industrial production. Considering the toxicity of lead (Pb) and the need for environmental protection, research on lead-free piezoceramics to replace Pb-based ones is imperative. Among these, potassium sodium niobate ((K, Na)NbO?, KNN)-based lead-free piezoceramics stand out due to the significant progress in their piezoelectric coefficient (d??), electro-strain, and temperature stability achieved through phase boundary engineering (PBE), texturing, defect engineering, and composite ceramics.

 

To make KNN achieve the?industrial-scale production of high-power applications, piezoceramics are expected to have both high d?? and mechanical quality factor (Q?) (also known as hard piezoceramics) as they operate in resonant mode. High d?? ensures the good electromechanical properties, while high Q? reduces the heat generation caused by dissipated energy. However, achieving a balance between d?? and Q? is highly challenging because they have different preferences for extrinsic contributions. This imbalance is more pronounced in KNN-based piezoceramics. Traditional acceptor doping (i.e., copper Cu and manganese Mn) and the newly-proposed isolatedoxygen-vacancy strategy greatly improve Q? but fail to ensure high d??, which compromises the mechanical properties, rendering mass production unfeasible. Additionally, traditional acceptor doping is mainly implemented on pristine KNN ceramics with low d?? values (e.g., <150 pC/N), resulting in even worse d?? after acceptor doping as expected.

 

Solutions and results

This study proposed a new strategy to study potassium sodium niobate (KNN)-based lead-free piezoelectric ceramics and achieved important results in many aspects. By embedding local copper acceptor defect dipoles in orthogonal-tetragonal phase boundary engineering (O-T PBE), the d?? and Q? balance of KNN-based ceramics was achieved. This strategy retains the room temperature O-T phase boundary and introduces dimer (CuNb′′′-Vo??)' and trimer (Vo??-CuNb′′′-Vo??)? defects. The existence of trimer defects was confirmed by X-ray absorption fine structure (XAFS) spectroscopy and first-principles calculations. The retained O-T phase boundary and the local structural inhomogeneity caused by the defects ensure high d33, and the defect dipoles formed by the dimer defects polarize the PD pinning domain wall motion and improve Q?. The KNN-BNH-1Cu sample was made better than other typical KNN-based piezoelectric ceramics.

 

Mesoscopic ferroelectric domain structure?

and polarization hysteresis behavior

 

Electromechanical properties?

and domain evolution model

?

Conclusion

Based on O-T PBE, by introducing copper acceptor doping, dimer (????????′′′???????)′ and trimer (???????????????′′′???????)? defects are formed. Dimer defects form defect dipole polarization and pin domain wall motion; trimer defects introduce local structural heterogeneity, resulting in nanoscale multiphase coexistence and rich nanodomains. Experimental results show that when the copper doping amount x=1, Q? increases by 4 times, while d?? only decreases by 1/5 (reaching 340 pC/N, Q? is 256). This strategy provides a new paradigm for the balance between d?? and Q? in lead-free piezoelectric ceramics, which is expected to promote their development in high-power applications and promote the practical application of lead-free piezoelectric ceramics in more fields.

 

Paper link

https://www.nature.com/articles/s41467-025-58269-5

 

PROFILE

 

 

譚啟(Daniel Tan)

Professor and Deputy Head

of Materials Science

and Engineering Program

Daniel Tan was recruited and appointed by Technion - Israel Institute of Technology as the professor of Guangdong Technion - Israel Institute of Technology in August 2018. Dr. Tan received a Ph. D. in Materials Science and Engineering from University of Illinois at Urbana-Champaign (UIUC) in 1998, and a Ph.D in Solid State Physics from Chinese Academy of Science in 1989 following Academician T.S.Ke. He used to?teach?at the University of Science and Technology of China. In 1994, he moved to the United States as a visiting scientist (Argonne National Laboratory and UIUC). He joined Honeywell Corp. in 1998 as a Sr. Scientist to develop high-K ferroelectric materials for semiconductor industry. In 2000, he was recruited to CTS Corp. as a Sr. Staff Engineer to develop high performance piezoelectric transducers and cell phone antenna materials. In the following 12 years, he dedicated his passion, innovation and pioneering efforts in Nanodielectrics and Energy Storage to General Electric. In 2016, he joined W.L. Gore as a Sr. Polymer Dielectric Scientist to further the high performance polymer investigations for capacitor and membrane technology.

 

Dr. Tan has authored/co-authored over 120 journal papers, 2 college teaching textbooks, 3 book chapters, and 50 corporate internal reports. As an innovator, he holds 60 patents and trade secrets in the field of ceramics, polymers, energy storage and electronic components. He has pioneered development in nanodielectric composites, high temperature and high energy density capacitors as a principal scientist for industry and US government. He is the recipient of various awards including the First Place Prize of Natural Science Award of Chinese Academy of Science, GE Global Research Innovation Award, 2022 Best Teaching Award of Guangdong Technion - Israel Institute of Technology, and The Most Worthy Technology Investment Award from the China Innovation and Entrepreneurship Fair 2023. He is a member of MRS, ACERS, SPIE, iMAPS and IEEE and reviewers of several journals.

GTIIT

推薦閱讀

廣以“黑科技”!可修復(fù)的柔性智能纖毛

?“阿秒閃光”照亮量子世界,

廣以教授研究登頂《自然·通訊》

廣以鐘子宜教授課題組發(fā)表頂刊綜述

 


文:譚啟、GTIIT傳媒與公共事務(wù)部

圖:譚啟

Text:?Daniel Tan,?GTIIT News & Public Affairs

Photos:?Daniel Tan

?

關(guān)注廣東以色列理工學(xué)院,開啟探索理工世界之旅

 

長按識別二維碼關(guān)注公眾號,點(diǎn)擊下方菜單欄左側(cè)“微信群”,申請加入交流群。

作者 ab, 808

密碼jyg000032

主站蜘蛛池模板: 依兰县| 兰考县| 察哈| 溧阳市| 哈尔滨市| 正镶白旗| 高安市| 宁河县| 黔南| 监利县| 宁国市| 天峻县| 安多县| 正阳县| 靖边县| 德化县| 琼海市| 安福县| 景德镇市| 宁阳县| 靖安县| 郯城县| 古田县| 尚志市| 东方市| 上虞市| 万盛区| 沂南县| 奇台县| 衡东县| 云林县| 玉环县| 涪陵区| 洪雅县| 丹寨县| 施秉县| 平山县| 泸水县| 柘荣县| 霍州市| 凉城县|